Call:
lm(formula = Tondu ~ age + edu + income, data = sel_dat)
Residuals:
Min 1Q Median 3Q Max
-3.7780 -1.1841 -0.4322 1.1079 5.4157
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.302529 0.257369 20.603 < 2e-16 ***
age -0.004205 0.003194 -1.316 0.1882
edu -0.244608 0.037579 -6.509 9.96e-11 ***
income -0.031855 0.016357 -1.948 0.0516 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.725 on 1676 degrees of freedom
(10 observations deleted due to missingness)
Multiple R-squared: 0.04287, Adjusted R-squared: 0.04115
F-statistic: 25.02 on 3 and 1676 DF, p-value: 7.771e-16
ta<- ggplot (sel_dat, aes (x= age,y= Tondu))+
geom_smooth (method = "lm" , se = F, show.legend = F)+
geom_point (show.legend = F, position = "jitter" ,alpha= .5 , pch= 16 ) + ggthemes:: theme_few () +
labs (x= "Age" , y= "TONDU preferences" )
te<- ggplot (sel_dat, aes (x= edu,y= Tondu))+
geom_smooth (method = "lm" , se = F, show.legend = F)+
geom_point (show.legend = F, position = "jitter" ,alpha= .5 , pch= 16 ) + ggthemes:: theme_few () +
labs (x= "Education" , y= "TONDU preferences" )
ti<- ggplot (sel_dat, aes (x= income,y= Tondu))+
geom_smooth (method = "lm" , se = F, show.legend = F)+
geom_point (show.legend = F, position = "jitter" ,alpha= .5 , pch= 16 ) + ggthemes:: theme_few () +
labs (x= "Income" , y= "TONDU preferences" )
grid.arrange (ta,te,ti,ncol= 3 ,nrow= 1 )